能源系统中(三大能源物质与三大能量系统间的关系?)
1. 三大能源物质与三大能量系统间的关系?
三大供能系统的关系:三大供能系统为ATP-CP系统、糖酵解系统、氧化能系统,三大能源系统并非互相独立的,当我们进行无氧运动时,所有能源系用会共同参与机体的能量供应,通常以一个能源系统为主,除非出现主要供能系统向另一个系统转变。
在运动过程中,身体的新陈代谢是加速的,加速的代谢需要消耗更多的能量。人体的能量是通过身体内的糖、蛋白质和脂肪分解代谢得来的。
扩展资料:
食物中的六大类营养物质,它们各具有一定的作用。糖类、脂肪、蛋白质都是组成细胞的主要物质,并能为生命活动提供能量。糖类是主要的供能物质,能为人体提供能量;
蛋白质是构成人体细胞的基本物质,与人体的生长发育以及细胞的修复和更新有重要关系,也能提供少量的能量;脂肪是备用能源,一般存储在皮下备用。
水、无机盐、维生素不能提供能量,其中水是构成细胞的主要成分,人体的废物和营养物质必须溶解在水中才能被运输。
2. 简述三大能源系统公式
人体运动中三大能源系统:
1,磷酸原系统
ATP和CP组成的供能系统。ATP以最大功率输出供能可维持约2秒;CP以最大功率输出供能可维持约3-5倍于ATP。剧烈运动时CP含量迅速下降,但ATP变化不大。其特点是能总量少,持续时间短,功率输出最快,不需要氧气,不产生乳酸等物质。短跑、跳跃、举重只能依靠此系统。
2,乳酸能系统
乳酸能系统是指糖原或葡萄糖在细胞浆内无氧分解生成乳酸过程中,再合成ATP的能量系统。其最大供能速率或输出功率为29.3 J·kg-1·s-1,供能持续时间为33s左右。由于最终产物是乳酸,故称乳酸能系统。其特点是,供能总量较磷酸原系统多,输出功率次之,不需要氧,产生乳酸。由于该系统产生乳酸,并扩散进入血液,所以,血乳酸水平是衡量乳酸能系统供能能力的最常用指标。乳酸是一种强酸,在体内聚积过多,超过了机体缓冲及耐受能力时,会破坏机体内环境酸碱度的稳态,进而又会限制糖的无氧酵解,直接影响ATP的再合成,导致机体疲劳。乳酸能系统供能的意义在于保证磷酸原系统最大供能后仍能维持数十秒快速供能,以应付机体的需要。该系统是1min以内要求高功率输出运动的供能基础。如400m跑、100m游泳等。专门的无氧训练可有效提高该系统的供能能力。
3,有氧氧化系统
有氧氧化系统是指糖、脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
从理论上分析,体内贮存的有氧氧化燃料,特别是脂肪是不会耗尽的,故该系统供能的最大容量可认为无限大。其特点是ATP生成总量很大,但速率很慢,需要氧的参与,不产生乳酸类的副产品。据计算,该系统的最大供能速率或输出功率为15 J·kg-1·s-1,该系统是进行长时间耐力活动的物质基础。
3. 能源系统结构是什么?
能源系统结构是指能源总生产量或总消费量中各类一次能源、二次能源的构成及其比例关系。
能源系统结构是能源系统工程研究的重要内容,它直接影响国民经济各部门的最终用能方式,并反映人民的生活水平。
能源系统结构分为生产结构和消费结构。
我国优化能源结构的路径是:降低煤炭消费比重,提高天然气消费比重,大力发展风电、太阳能、地热能等可再生能源,安全发展核电。
4. 三大能源物质与三大能量系统间的关系?
三大供能系统的关系:三大供能系统为ATP-CP系统、糖酵解系统、氧化能系统,三大能源系统并非互相独立的,当我们进行无氧运动时,所有能源系用会共同参与机体的能量供应,通常以一个能源系统为主,除非出现主要供能系统向另一个系统转变。
在运动过程中,身体的新陈代谢是加速的,加速的代谢需要消耗更多的能量。人体的能量是通过身体内的糖、蛋白质和脂肪分解代谢得来的。
扩展资料:
食物中的六大类营养物质,它们各具有一定的作用。糖类、脂肪、蛋白质都是组成细胞的主要物质,并能为生命活动提供能量。糖类是主要的供能物质,能为人体提供能量;
蛋白质是构成人体细胞的基本物质,与人体的生长发育以及细胞的修复和更新有重要关系,也能提供少量的能量;脂肪是备用能源,一般存储在皮下备用。
水、无机盐、维生素不能提供能量,其中水是构成细胞的主要成分,人体的废物和营养物质必须溶解在水中才能被运输。
5. 简述三大能源系统公式
人体运动中三大能源系统:
1,磷酸原系统
ATP和CP组成的供能系统。ATP以最大功率输出供能可维持约2秒;CP以最大功率输出供能可维持约3-5倍于ATP。剧烈运动时CP含量迅速下降,但ATP变化不大。其特点是能总量少,持续时间短,功率输出最快,不需要氧气,不产生乳酸等物质。短跑、跳跃、举重只能依靠此系统。
2,乳酸能系统
乳酸能系统是指糖原或葡萄糖在细胞浆内无氧分解生成乳酸过程中,再合成ATP的能量系统。其最大供能速率或输出功率为29.3 J·kg-1·s-1,供能持续时间为33s左右。由于最终产物是乳酸,故称乳酸能系统。其特点是,供能总量较磷酸原系统多,输出功率次之,不需要氧,产生乳酸。由于该系统产生乳酸,并扩散进入血液,所以,血乳酸水平是衡量乳酸能系统供能能力的最常用指标。乳酸是一种强酸,在体内聚积过多,超过了机体缓冲及耐受能力时,会破坏机体内环境酸碱度的稳态,进而又会限制糖的无氧酵解,直接影响ATP的再合成,导致机体疲劳。乳酸能系统供能的意义在于保证磷酸原系统最大供能后仍能维持数十秒快速供能,以应付机体的需要。该系统是1min以内要求高功率输出运动的供能基础。如400m跑、100m游泳等。专门的无氧训练可有效提高该系统的供能能力。
3,有氧氧化系统
有氧氧化系统是指糖、脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
从理论上分析,体内贮存的有氧氧化燃料,特别是脂肪是不会耗尽的,故该系统供能的最大容量可认为无限大。其特点是ATP生成总量很大,但速率很慢,需要氧的参与,不产生乳酸类的副产品。据计算,该系统的最大供能速率或输出功率为15 J·kg-1·s-1,该系统是进行长时间耐力活动的物质基础。
6. 新能源bmu是什么?
电池管理系统(BATTERY MANAGEMENT SYSTEM),电动汽车电池管理系统(BMS)是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
2. 二次电池存在下面的一些缺点,如存储能量少、寿命短、串并联使用问题、使用安全性、电池电量估算困难等。电池的性能是很复杂的,不同类型的电池特性亦相差很大。
3. 电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。随着电池管理系统的发展,也会增添其它的功能。
7. 三大能源系统是什么?
三大能源系统分别为:1一磷酸原系统,2一乳酸能系统,3一有氧氧化系统。
1)1一磷酸原系统:ATP和CP组成的供能系统。
2)2一乳酸能系统:乳酸能系统是指糖原或葡萄糖在细胞浆闪无氧分解生成乳酸过程中,再合成ATP的能量系统。
3)3一有氧氧化系统:有氧氧化系统是指糖,脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
8. 能源系统结构是什么?
能源系统结构是指能源总生产量或总消费量中各类一次能源、二次能源的构成及其比例关系。
能源系统结构是能源系统工程研究的重要内容,它直接影响国民经济各部门的最终用能方式,并反映人民的生活水平。
能源系统结构分为生产结构和消费结构。
我国优化能源结构的路径是:降低煤炭消费比重,提高天然气消费比重,大力发展风电、太阳能、地热能等可再生能源,安全发展核电。
9. 三大能源物质与三大能量系统间的关系?
三大供能系统的关系:三大供能系统为ATP-CP系统、糖酵解系统、氧化能系统,三大能源系统并非互相独立的,当我们进行无氧运动时,所有能源系用会共同参与机体的能量供应,通常以一个能源系统为主,除非出现主要供能系统向另一个系统转变。
在运动过程中,身体的新陈代谢是加速的,加速的代谢需要消耗更多的能量。人体的能量是通过身体内的糖、蛋白质和脂肪分解代谢得来的。
扩展资料:
食物中的六大类营养物质,它们各具有一定的作用。糖类、脂肪、蛋白质都是组成细胞的主要物质,并能为生命活动提供能量。糖类是主要的供能物质,能为人体提供能量;
蛋白质是构成人体细胞的基本物质,与人体的生长发育以及细胞的修复和更新有重要关系,也能提供少量的能量;脂肪是备用能源,一般存储在皮下备用。
水、无机盐、维生素不能提供能量,其中水是构成细胞的主要成分,人体的废物和营养物质必须溶解在水中才能被运输。
10. 三大能源物质与三大能量系统间的关系?
三大供能系统的关系:三大供能系统为ATP-CP系统、糖酵解系统、氧化能系统,三大能源系统并非互相独立的,当我们进行无氧运动时,所有能源系用会共同参与机体的能量供应,通常以一个能源系统为主,除非出现主要供能系统向另一个系统转变。
在运动过程中,身体的新陈代谢是加速的,加速的代谢需要消耗更多的能量。人体的能量是通过身体内的糖、蛋白质和脂肪分解代谢得来的。
扩展资料:
食物中的六大类营养物质,它们各具有一定的作用。糖类、脂肪、蛋白质都是组成细胞的主要物质,并能为生命活动提供能量。糖类是主要的供能物质,能为人体提供能量;
蛋白质是构成人体细胞的基本物质,与人体的生长发育以及细胞的修复和更新有重要关系,也能提供少量的能量;脂肪是备用能源,一般存储在皮下备用。
水、无机盐、维生素不能提供能量,其中水是构成细胞的主要成分,人体的废物和营养物质必须溶解在水中才能被运输。
11. 简述三大能源系统公式
人体运动中三大能源系统:
1,磷酸原系统
ATP和CP组成的供能系统。ATP以最大功率输出供能可维持约2秒;CP以最大功率输出供能可维持约3-5倍于ATP。剧烈运动时CP含量迅速下降,但ATP变化不大。其特点是能总量少,持续时间短,功率输出最快,不需要氧气,不产生乳酸等物质。短跑、跳跃、举重只能依靠此系统。
2,乳酸能系统
乳酸能系统是指糖原或葡萄糖在细胞浆内无氧分解生成乳酸过程中,再合成ATP的能量系统。其最大供能速率或输出功率为29.3 J·kg-1·s-1,供能持续时间为33s左右。由于最终产物是乳酸,故称乳酸能系统。其特点是,供能总量较磷酸原系统多,输出功率次之,不需要氧,产生乳酸。由于该系统产生乳酸,并扩散进入血液,所以,血乳酸水平是衡量乳酸能系统供能能力的最常用指标。乳酸是一种强酸,在体内聚积过多,超过了机体缓冲及耐受能力时,会破坏机体内环境酸碱度的稳态,进而又会限制糖的无氧酵解,直接影响ATP的再合成,导致机体疲劳。乳酸能系统供能的意义在于保证磷酸原系统最大供能后仍能维持数十秒快速供能,以应付机体的需要。该系统是1min以内要求高功率输出运动的供能基础。如400m跑、100m游泳等。专门的无氧训练可有效提高该系统的供能能力。
3,有氧氧化系统
有氧氧化系统是指糖、脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
从理论上分析,体内贮存的有氧氧化燃料,特别是脂肪是不会耗尽的,故该系统供能的最大容量可认为无限大。其特点是ATP生成总量很大,但速率很慢,需要氧的参与,不产生乳酸类的副产品。据计算,该系统的最大供能速率或输出功率为15 J·kg-1·s-1,该系统是进行长时间耐力活动的物质基础。
12. 简述三大能源系统公式
人体运动中三大能源系统:
1,磷酸原系统
ATP和CP组成的供能系统。ATP以最大功率输出供能可维持约2秒;CP以最大功率输出供能可维持约3-5倍于ATP。剧烈运动时CP含量迅速下降,但ATP变化不大。其特点是能总量少,持续时间短,功率输出最快,不需要氧气,不产生乳酸等物质。短跑、跳跃、举重只能依靠此系统。
2,乳酸能系统
乳酸能系统是指糖原或葡萄糖在细胞浆内无氧分解生成乳酸过程中,再合成ATP的能量系统。其最大供能速率或输出功率为29.3 J·kg-1·s-1,供能持续时间为33s左右。由于最终产物是乳酸,故称乳酸能系统。其特点是,供能总量较磷酸原系统多,输出功率次之,不需要氧,产生乳酸。由于该系统产生乳酸,并扩散进入血液,所以,血乳酸水平是衡量乳酸能系统供能能力的最常用指标。乳酸是一种强酸,在体内聚积过多,超过了机体缓冲及耐受能力时,会破坏机体内环境酸碱度的稳态,进而又会限制糖的无氧酵解,直接影响ATP的再合成,导致机体疲劳。乳酸能系统供能的意义在于保证磷酸原系统最大供能后仍能维持数十秒快速供能,以应付机体的需要。该系统是1min以内要求高功率输出运动的供能基础。如400m跑、100m游泳等。专门的无氧训练可有效提高该系统的供能能力。
3,有氧氧化系统
有氧氧化系统是指糖、脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
从理论上分析,体内贮存的有氧氧化燃料,特别是脂肪是不会耗尽的,故该系统供能的最大容量可认为无限大。其特点是ATP生成总量很大,但速率很慢,需要氧的参与,不产生乳酸类的副产品。据计算,该系统的最大供能速率或输出功率为15 J·kg-1·s-1,该系统是进行长时间耐力活动的物质基础。
13. 能源系统结构是什么?
能源系统结构是指能源总生产量或总消费量中各类一次能源、二次能源的构成及其比例关系。
能源系统结构是能源系统工程研究的重要内容,它直接影响国民经济各部门的最终用能方式,并反映人民的生活水平。
能源系统结构分为生产结构和消费结构。
我国优化能源结构的路径是:降低煤炭消费比重,提高天然气消费比重,大力发展风电、太阳能、地热能等可再生能源,安全发展核电。
14. 能源系统结构是什么?
能源系统结构是指能源总生产量或总消费量中各类一次能源、二次能源的构成及其比例关系。
能源系统结构是能源系统工程研究的重要内容,它直接影响国民经济各部门的最终用能方式,并反映人民的生活水平。
能源系统结构分为生产结构和消费结构。
我国优化能源结构的路径是:降低煤炭消费比重,提高天然气消费比重,大力发展风电、太阳能、地热能等可再生能源,安全发展核电。
15. 新能源bmu是什么?
电池管理系统(BATTERY MANAGEMENT SYSTEM),电动汽车电池管理系统(BMS)是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
2. 二次电池存在下面的一些缺点,如存储能量少、寿命短、串并联使用问题、使用安全性、电池电量估算困难等。电池的性能是很复杂的,不同类型的电池特性亦相差很大。
3. 电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。随着电池管理系统的发展,也会增添其它的功能。
16. 三大能源系统是什么?
三大能源系统分别为:1一磷酸原系统,2一乳酸能系统,3一有氧氧化系统。
1)1一磷酸原系统:ATP和CP组成的供能系统。
2)2一乳酸能系统:乳酸能系统是指糖原或葡萄糖在细胞浆闪无氧分解生成乳酸过程中,再合成ATP的能量系统。
3)3一有氧氧化系统:有氧氧化系统是指糖,脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
17. 三大能源系统是什么?
三大能源系统分别为:1一磷酸原系统,2一乳酸能系统,3一有氧氧化系统。
1)1一磷酸原系统:ATP和CP组成的供能系统。
2)2一乳酸能系统:乳酸能系统是指糖原或葡萄糖在细胞浆闪无氧分解生成乳酸过程中,再合成ATP的能量系统。
3)3一有氧氧化系统:有氧氧化系统是指糖,脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
18. 简述基于物联网的建筑能源管理系统中的功能架构?
在能源形势紧张的大趋势下,高能耗的大型公共建筑能源管理系统的建设逐渐受到重视,以物联网技术及基础的建筑能源管理平台可以提供即时、准确、高效的能源管理策略。
总体思路:
通过结合物联网技术的建筑能源管理构建方法,对物联网体系结构与建筑能源管理系统的相关性进行分析,并从能耗数据收集、能源审计、能源管理这三个层级探讨这两者的应用结合方法,为公共建筑能源管理系统的升级与优化提供了一定的思路。
功能架构:
公共建筑能源管理系统包含了设置在建筑中不同位置的物联网终端、物联网能源管理平台以及通信设施,而物联网独特的体系结构刚好可以对应满足建筑能源管理系统的多层需求。
传感层:
其中,传感层主要是通过各终端设备实时采集建筑能源消耗数据,它也是物联网能源管理的前提和基础,通过传感器完成能耗数据信息的采集。
对于建筑能源管理系统来说,传感层数据实现高效收集和精细化管理的前提是能耗分项计量,因此,需要在能源管理系统建立之初就完成能耗分项计量的相关设备。 计量对象包括:耗电量、耗水量、耗热量,耗冷量,耗煤气量等,其中,电能消耗是公共建筑主要能耗,需进一步根据耗能设备等进行细分,也可以根据实际运行情况进行分时段计量等。
分项计算:
目前建筑智能化系统设计中一般没有分项计量功能,难以实现能耗精细化管理,因而实现能耗分项计量是搭建物联网智能建筑能源管理平台很重要的需求。
分项计量需要利用物联网等相关技术首先安装分项计量装置,按电、水、油、气等能源形态分类后,再根据不同的能源用途和用能区域进行分项计量,也可以根据实际需要对能耗情况进 行分时段的计量。
分项数据传输到能源管理平台后,可以 实现对能耗设备运行状况实时监测 ;根据分项数据不同办 公区域或者不同时段的能耗比较 ,可以准确详细地掌握一 个单位或系统的能源消费结构 ,对建筑存在的节能潜力做 出诊断 ;在此基础上,提出节能改造方案。
能耗分项计量为开展能源审计工作提供了前提,能源管理系统可以实时监测各个耗能设备的状况。 同时,通过物联网传输网络层将建筑能耗数据传输至物联网平台,这一数据传输途径主要是通过汇聚网的短距离通信技术获取传感层信息,通过接入网完成数据接入,然后由承载网将能耗数据传输至应用网络层。
应用网络:
在物联网应用网络层,对接收到的分项能耗数据进行处理和分析,获取建筑用能特点、重点耗能单位,以及建筑能源消耗结构等,并对建筑能源利用效率进行评价,对建筑的节能潜力做出评估。 此外,还可以在完成能耗数据的综合计量与分析的基础上,利用应用层完成物联网平台能源管理系统应用的开发,包括建筑耗能设备远程管理、能耗数据管理等。
19. 简述基于物联网的建筑能源管理系统中的功能架构?
在能源形势紧张的大趋势下,高能耗的大型公共建筑能源管理系统的建设逐渐受到重视,以物联网技术及基础的建筑能源管理平台可以提供即时、准确、高效的能源管理策略。
总体思路:
通过结合物联网技术的建筑能源管理构建方法,对物联网体系结构与建筑能源管理系统的相关性进行分析,并从能耗数据收集、能源审计、能源管理这三个层级探讨这两者的应用结合方法,为公共建筑能源管理系统的升级与优化提供了一定的思路。
功能架构:
公共建筑能源管理系统包含了设置在建筑中不同位置的物联网终端、物联网能源管理平台以及通信设施,而物联网独特的体系结构刚好可以对应满足建筑能源管理系统的多层需求。
传感层:
其中,传感层主要是通过各终端设备实时采集建筑能源消耗数据,它也是物联网能源管理的前提和基础,通过传感器完成能耗数据信息的采集。
对于建筑能源管理系统来说,传感层数据实现高效收集和精细化管理的前提是能耗分项计量,因此,需要在能源管理系统建立之初就完成能耗分项计量的相关设备。 计量对象包括:耗电量、耗水量、耗热量,耗冷量,耗煤气量等,其中,电能消耗是公共建筑主要能耗,需进一步根据耗能设备等进行细分,也可以根据实际运行情况进行分时段计量等。
分项计算:
目前建筑智能化系统设计中一般没有分项计量功能,难以实现能耗精细化管理,因而实现能耗分项计量是搭建物联网智能建筑能源管理平台很重要的需求。
分项计量需要利用物联网等相关技术首先安装分项计量装置,按电、水、油、气等能源形态分类后,再根据不同的能源用途和用能区域进行分项计量,也可以根据实际需要对能耗情况进 行分时段的计量。
分项数据传输到能源管理平台后,可以 实现对能耗设备运行状况实时监测 ;根据分项数据不同办 公区域或者不同时段的能耗比较 ,可以准确详细地掌握一 个单位或系统的能源消费结构 ,对建筑存在的节能潜力做 出诊断 ;在此基础上,提出节能改造方案。
能耗分项计量为开展能源审计工作提供了前提,能源管理系统可以实时监测各个耗能设备的状况。 同时,通过物联网传输网络层将建筑能耗数据传输至物联网平台,这一数据传输途径主要是通过汇聚网的短距离通信技术获取传感层信息,通过接入网完成数据接入,然后由承载网将能耗数据传输至应用网络层。
应用网络:
在物联网应用网络层,对接收到的分项能耗数据进行处理和分析,获取建筑用能特点、重点耗能单位,以及建筑能源消耗结构等,并对建筑能源利用效率进行评价,对建筑的节能潜力做出评估。 此外,还可以在完成能耗数据的综合计量与分析的基础上,利用应用层完成物联网平台能源管理系统应用的开发,包括建筑耗能设备远程管理、能耗数据管理等。
20. 新能源bmu是什么?
电池管理系统(BATTERY MANAGEMENT SYSTEM),电动汽车电池管理系统(BMS)是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
2. 二次电池存在下面的一些缺点,如存储能量少、寿命短、串并联使用问题、使用安全性、电池电量估算困难等。电池的性能是很复杂的,不同类型的电池特性亦相差很大。
3. 电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。随着电池管理系统的发展,也会增添其它的功能。
21. 简述基于物联网的建筑能源管理系统中的功能架构?
在能源形势紧张的大趋势下,高能耗的大型公共建筑能源管理系统的建设逐渐受到重视,以物联网技术及基础的建筑能源管理平台可以提供即时、准确、高效的能源管理策略。
总体思路:
通过结合物联网技术的建筑能源管理构建方法,对物联网体系结构与建筑能源管理系统的相关性进行分析,并从能耗数据收集、能源审计、能源管理这三个层级探讨这两者的应用结合方法,为公共建筑能源管理系统的升级与优化提供了一定的思路。
功能架构:
公共建筑能源管理系统包含了设置在建筑中不同位置的物联网终端、物联网能源管理平台以及通信设施,而物联网独特的体系结构刚好可以对应满足建筑能源管理系统的多层需求。
传感层:
其中,传感层主要是通过各终端设备实时采集建筑能源消耗数据,它也是物联网能源管理的前提和基础,通过传感器完成能耗数据信息的采集。
对于建筑能源管理系统来说,传感层数据实现高效收集和精细化管理的前提是能耗分项计量,因此,需要在能源管理系统建立之初就完成能耗分项计量的相关设备。 计量对象包括:耗电量、耗水量、耗热量,耗冷量,耗煤气量等,其中,电能消耗是公共建筑主要能耗,需进一步根据耗能设备等进行细分,也可以根据实际运行情况进行分时段计量等。
分项计算:
目前建筑智能化系统设计中一般没有分项计量功能,难以实现能耗精细化管理,因而实现能耗分项计量是搭建物联网智能建筑能源管理平台很重要的需求。
分项计量需要利用物联网等相关技术首先安装分项计量装置,按电、水、油、气等能源形态分类后,再根据不同的能源用途和用能区域进行分项计量,也可以根据实际需要对能耗情况进 行分时段的计量。
分项数据传输到能源管理平台后,可以 实现对能耗设备运行状况实时监测 ;根据分项数据不同办 公区域或者不同时段的能耗比较 ,可以准确详细地掌握一 个单位或系统的能源消费结构 ,对建筑存在的节能潜力做 出诊断 ;在此基础上,提出节能改造方案。
能耗分项计量为开展能源审计工作提供了前提,能源管理系统可以实时监测各个耗能设备的状况。 同时,通过物联网传输网络层将建筑能耗数据传输至物联网平台,这一数据传输途径主要是通过汇聚网的短距离通信技术获取传感层信息,通过接入网完成数据接入,然后由承载网将能耗数据传输至应用网络层。
应用网络:
在物联网应用网络层,对接收到的分项能耗数据进行处理和分析,获取建筑用能特点、重点耗能单位,以及建筑能源消耗结构等,并对建筑能源利用效率进行评价,对建筑的节能潜力做出评估。 此外,还可以在完成能耗数据的综合计量与分析的基础上,利用应用层完成物联网平台能源管理系统应用的开发,包括建筑耗能设备远程管理、能耗数据管理等。
22. 新能源bmu是什么?
电池管理系统(BATTERY MANAGEMENT SYSTEM),电动汽车电池管理系统(BMS)是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
2. 二次电池存在下面的一些缺点,如存储能量少、寿命短、串并联使用问题、使用安全性、电池电量估算困难等。电池的性能是很复杂的,不同类型的电池特性亦相差很大。
3. 电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。随着电池管理系统的发展,也会增添其它的功能。
23. 三大能源系统是什么?
三大能源系统分别为:1一磷酸原系统,2一乳酸能系统,3一有氧氧化系统。
1)1一磷酸原系统:ATP和CP组成的供能系统。
2)2一乳酸能系统:乳酸能系统是指糖原或葡萄糖在细胞浆闪无氧分解生成乳酸过程中,再合成ATP的能量系统。
3)3一有氧氧化系统:有氧氧化系统是指糖,脂肪和蛋白质在细胞内彻底氧化成水和二氧化碳的过程中,再合成ATP的能量系统。
24. 简述基于物联网的建筑能源管理系统中的功能架构?
在能源形势紧张的大趋势下,高能耗的大型公共建筑能源管理系统的建设逐渐受到重视,以物联网技术及基础的建筑能源管理平台可以提供即时、准确、高效的能源管理策略。
总体思路:
通过结合物联网技术的建筑能源管理构建方法,对物联网体系结构与建筑能源管理系统的相关性进行分析,并从能耗数据收集、能源审计、能源管理这三个层级探讨这两者的应用结合方法,为公共建筑能源管理系统的升级与优化提供了一定的思路。
功能架构:
公共建筑能源管理系统包含了设置在建筑中不同位置的物联网终端、物联网能源管理平台以及通信设施,而物联网独特的体系结构刚好可以对应满足建筑能源管理系统的多层需求。
传感层:
其中,传感层主要是通过各终端设备实时采集建筑能源消耗数据,它也是物联网能源管理的前提和基础,通过传感器完成能耗数据信息的采集。
对于建筑能源管理系统来说,传感层数据实现高效收集和精细化管理的前提是能耗分项计量,因此,需要在能源管理系统建立之初就完成能耗分项计量的相关设备。 计量对象包括:耗电量、耗水量、耗热量,耗冷量,耗煤气量等,其中,电能消耗是公共建筑主要能耗,需进一步根据耗能设备等进行细分,也可以根据实际运行情况进行分时段计量等。
分项计算:
目前建筑智能化系统设计中一般没有分项计量功能,难以实现能耗精细化管理,因而实现能耗分项计量是搭建物联网智能建筑能源管理平台很重要的需求。
分项计量需要利用物联网等相关技术首先安装分项计量装置,按电、水、油、气等能源形态分类后,再根据不同的能源用途和用能区域进行分项计量,也可以根据实际需要对能耗情况进 行分时段的计量。
分项数据传输到能源管理平台后,可以 实现对能耗设备运行状况实时监测 ;根据分项数据不同办 公区域或者不同时段的能耗比较 ,可以准确详细地掌握一 个单位或系统的能源消费结构 ,对建筑存在的节能潜力做 出诊断 ;在此基础上,提出节能改造方案。
能耗分项计量为开展能源审计工作提供了前提,能源管理系统可以实时监测各个耗能设备的状况。 同时,通过物联网传输网络层将建筑能耗数据传输至物联网平台,这一数据传输途径主要是通过汇聚网的短距离通信技术获取传感层信息,通过接入网完成数据接入,然后由承载网将能耗数据传输至应用网络层。
应用网络:
在物联网应用网络层,对接收到的分项能耗数据进行处理和分析,获取建筑用能特点、重点耗能单位,以及建筑能源消耗结构等,并对建筑能源利用效率进行评价,对建筑的节能潜力做出评估。 此外,还可以在完成能耗数据的综合计量与分析的基础上,利用应用层完成物联网平台能源管理系统应用的开发,包括建筑耗能设备远程管理、能耗数据管理等。